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Polarization of the cosmic microwave background, though not yet detected, provides a source
of information about cosmological parameters complementary to temperature uctuations. This
paper provides a complete theoretical treatment of polarization uctuations. After a discussion of
the physics of polarization, the Boltzmann equation governing the evolution of the photon density
matrix is derived from quantum theory and applied to microwave background uctuations, resulting
in a complete set of transport equations for the Stokes parameters from both scalar and tensor
metric perturbations. This approach is equivalent at lowest order in scattering kinematics to classical
radiative transfer, and provides a general framework for treating the cosmological evolution of density
matrices. The metric perturbations are treated in the physically appealing longitudinal gauge.
Expressions for various temperature and polarization correlation functions are derived. Detection
prospects and theoretical utility of microwave background polarization are briey discussed.

I. INTRODUCTION

Since the initial announcement by the COBE team of the detection of cosmic microwave background temperature
anisotropies [1], a great deal of experimental activity has resulted in nearly a dozen more anisotropy detections on a
wide range of angular scales [2,3]. Simultaneously, detailed numerical analysis has sharpened theoretical expectations
for the temperature anisotropy and its dependence on a variety of cosmological parameters, primarily in the context of
theories with initial adiabatic perturbations (of which Cold Dark Matter is a special case) [4{7] but also in cosmological
defect models [8]. While much work remains to be done, the focus of microwave background research has shifted from
simply detecting anisotropies to creating a detailed picture, both experimental and theoretical, of the anisotropies on
all angular scale, and using this picture to constrain cosmological models [3].
The cosmological information in the microwave background is encoded not only in temperature uctuations but

also in its polarization. Since, as discussed below in Sec. II, the source term for generating polarization is uctuations
in radiation intensity, generally polarization uctuations are expected to be somewhat smaller than temperature
uctuations. Numerical calculations have con�rmed this rough expectation, giving polarization uctuations no larger
than 10% of the temperature anisotropies [9,10]. Greater experimental sensitivity is required to measure polarization
than temperature uctuations, and so far only upper limits have been established. However, polarization uctuation
measurements also have certain experimental advantages over temperature uctuation measurements, making �rst
detection of polarization within the next few years a reasonable possibility.
Currently the best polarization limit comes from the Saskatoon experiment [2], with a 95% con�dence level upper

limit of 25 �K between two orthogonal linear polarizations at angular scales of about a degree, corresponding to
9 � 10�6 of the mean temperature. An earlier experiment mapped a large portion of the sky with a 7� beam to
place upper limits of 6� 10�5 in linear polarization and 6� 10�4 in circular polarization for quadrupole and octupole
variations [11], while a later measurement put limits of around 5 � 10�5 on both linear and circular polarization
at arcminute scales [12]. The COBE satellite made polarized measurements and can in principle achieve a limit of
around 10�5 at angular scales from 7� to quadrupole, although doing so would require reanalysis of the entire data set
[13]. While the sensitivity of the Saskatoon experiment is very good, it is designed primarily to measure temperature
uctuations. A new experiment planned for 1995 is optimized to measure polarization at 1� and 7� scales and aims
for a sensitivity at or below 10�6 [14].
On the theory side, microwave background polarization has been discussed for many years [15{19]. Detailed

calculations for CDM models have given linear polarization as large as 10% of the temperature anisotropy at medium
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angular scales, with a strong dependence on the ionization history of the universe [9,10]. Another recent calculation
has mapped expected correlation patterns between temperature uctuations and polarization [20].
The aim of this paper is a detailed investigation of the theory of microwave background polarization. In contrast to

previous work employing classical radiative transfer theory [21], the evolution of polarization is derived from a photon
description; this approach has previously been applied to temperature uctuations in systematic investigations of
second-order e�ects [6,22]. The usual classical Boltzmann equation, adequate for describing temperature uctuations,
must be generalized to a density matrix describing the photon polarization state. The formalism for this generalized
Boltzmann equation was recently developed in the context of neutrino-avor evolution [23]. Here the appropriate
equation is derived beginning with the fundamental description of the relevant Compton scattering process; the
techniques easily generalize to give a Boltzmann equation for any particular density matrix. The advantage of this
approach is that it treats photons in a general manner, like other particle species described by a Boltzmann equation,
and can easily be applied to other polarized distributions, e.g. electrons in a magnetic �eld. It also gives a systematic
perturbative expansion in the relevant small quantities, and thus provides the framework for an investigation of all
second-order polarization e�ects, which may be of particular interest in the case of early reionization for which the
polarization contribution is the largest [24,25]. This paper also serves as a review which presents many derivations of
relevant formulas which remain unpublished.
Section II provides an overview of the physics of polarization and its application to the microwave background.

A simple calculation demonstrates that only quadrupolar variations in radiation intensity on a scatterer produce
polarization. The Stokes parameters are de�ned and their connection to the photon density matrix made explicit.
Section III derives the general formula for the time evolution of a density matrix in terms of an interaction Hamiltonian.
This section is rather formal; the relevant result is Eq. (3.12). Section IV specializes this result to the evolution of
the photon density matrix including Compton scattering. The calculation in this section is straightforward but long;
the ultimate result is Eq. (4.24), which is equivalent to the usual classical equations of radiative transfer [21].
The particular application to a cosmological context begins in Section V, which derives the general relativistic

Liouville equation for a perturbed Friedmann-Robertson-Walker spacetime. This collisionless part of the Boltzmann
equation describes the photon geodesics in a homogeneous and isotropic universe with small scalar and tensor metric
perturbations. The scalar perturbations are described with the physically appealing longitudinal gauge [26] instead
of the more traditional synchronous gauge. Section VI gives the �nal evolution equations for the Stokes parameters
describing the microwave background. The temperature and polarization uctuations must be expressed in terms of
their statistical properties for comparison with experimental results; Section VII derives expressions for the power
spectra of various correlations and cross-correlations between temperature and polarization. Finally, the concluding
section briey discusses what detailed polarization measurements may eventually reveal about cosmology.
This paper employs natural units throughout, in which �h = c = G = kB = 1; Section II uses gaussian units

for electromagnetic quantities. The metric signature is (+ � ��). Spinor normalizations and other �eld theory
conventions in Section IV conform to Mandl and Shaw [27].

II. PHYSICS OF POLARIZATION

This section gives a qualitative overview of the physics of polarization in the context of the microwave background.
We begin with a review of Stokes parameters, the conventional method for describing polarized light. Then we
show how polarization can be generated by scattering; application to processes on the last scattering surface predict
distinctive correlations between hot and cold spots and polarization direction. The equivalent polarization description
in terms of the photon density matrix is then presented, with the connection to the conventional Stokes parameters
made explicit.

A. Review of Stokes Parameters

Polarized light is conventionally described in terms of the Stokes parameters, which are presented in any op-
tics text [28]. Consider a nearly monochromatic plane electromagnetic wave propogating in the z-direction; nearly
monochromatic here means that its frequency components are closely distributed around its mean frequency !0. The
components of the wave's electric �eld vector at a given point in space can be written as

Ex = ax(t) cos [!0t� �x(t)] ; Ey = ay(t) cos [!0t� �y(t)] : (2.1)

The requirement that the wave is nearly monochromatic guarantees that the amplitudes ax and ay and the phase
angles �x and �y will be slowly varying functions of time relative to the inverse frequency of the wave. If some
correlation exists between the two components in Eq. (2.1), then the wave is polarized.
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The Stokes parameters are de�ned as the following time averages:

I � ha2xi + ha2yi; (2.2a)

Q� ha2xi � ha2yi; (2.2b)

U � h2axay cos(�x � �y)i; (2.2c)

V � h2axay sin(�x � �y)i: (2.2d)

The parameter I gives the intensity of the radiation which is always positive. The other three parameters de�ne
the polarization state of the wave and can have either sign. Unpolarized radiation, or \natural light," is described
by Q = U = V = 0. One important property of the Stokes parameters is that they are additive for incoherent
superpositions of waves. The four parameters can be measured with a linear polarizer and a quarter-wave plate; the
�rst three can be measured with only a linear polarizer. The V parameter can also be measured as the intensity
di�erence between left and right circular polarizations.
The parameters I and V are physical observables independent of the coordinate system, but Q and U depend on

the orientation of the x and y axes. If a given wave is described by the parameters Q and U for a certain orientation
of the coordinate system, then after a rotation of the x� y plane through an angle �, the same wave is now described
by the parameters

Q0= Q cos(2�) + U sin(2�);

U 0= �Q sin(2�) + U cos(2�): (2.3)

From this transformation it is easy to see that the quantity Q2 + U2 is invariant under rotation of the axes, and the
angle

� � 1

2
tan�1

U

Q
(2.4)

transforms to ��� under a rotation by � and thus de�nes a constant direction. The physically observable polarization
vector P is here de�ned as orthogonal to the direction of wave propogation, having magnitude (Q2+U2)1=2 and polar
angle �. For a wave with linear polarization, the vector P lies along the constant orientation of the electric �eld.
Note that since the de�nition (2.4) is degenerate for � and � + �, only the orientation of P is de�ned and not the
direction. We take the range of � to be ��=2 < � < �=2 with the sign of � the same as the sign of U . While the
radiation transport equations below are most conveniently formulated in terms of the Stokes parameters, the physical
interpretation of a polarization pattern is clearest in terms of the observables I, V , and P.

B. Polarization and the Last Scattering Surface

In the early universe, at redshifts greater than about z � 1100, the baryons, electrons, and photons comprise a
tightly coupled uid. Small metric perturbations induce bulk velocities of the uid, and the resulting anisotropies in
the photon distribution will induce polarization when the photons scatter o� charged particles. After recombination,
the photons freely propagate along geodesics, and any polarization produced before recombination will remain �xed.
A su�ciently early reionization can of course generate further polarization.
A simple idealization of the last scattering surface elucidates the process of polarization generation. Consider

initially unpolarized light which undergoes Thomson scattering at a given point and is then viewed by an observer. If
the intensity of the light incident on the scattering point is uniform in every direction, then obviously no polarization
can result; however, if the incident intensity varies with direction then polarization can be generated. Choose the
z-axis to lie in the direction of the outgoing light, which is described by the Stokes parameters I, Q, U , and V ;
represent the light incident on the scattering point by the intensity I0(�; �). De�ne the polarization vectors for the
outgoing beam of light so that �̂x is perpendicular to the scattering plane and �̂y is in the scattering plane, and likewise
with the incoming polarization vectors �̂0x and �̂

0
y (see Fig. 1). Also, instead of dealing with I and Q, it is convenient to

describe the scattering process in terms of Ix = (I +Q)=2 and Iy = (I �Q)=2. The Thomson scattering cross-section
for an incident wave with linear polarization �̂0 into a scattered wave with linear polarization �̂ is given by

d�

d

=

3�T
8�

j�̂0 � �̂j2 (2.5)

where �T is the total Thomson cross section. The incoming wave is unpolarized by assumption, and thus satis�es
I0x = I0y � I0=2. The scattered intensities are
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FIG. 1. De�nition of vectors and angles for Thomson scattering of a light beam or photon.

Ix=
3�T
8�

�
I0x(�̂

0
x � �̂x)2 + I0y(�̂

0
y � �̂x)2

�
=

3�T
16�

I 0; (2.6a)

Iy=
3�T
8�

�
I0x(�̂

0
x � �̂y)2 + I0y(�̂

0
y � �̂y)2

�
=

3�T
16�

I0 cos2 �: (2.6b)

Thus the scattered wave has the Stokes parameters

I= Ix + Iy =
3�T
16�

I0(1 + cos2 �); (2.7a)

Q= Ix � Iy =
3�T
16�

I0 sin2 �: (2.7b)

This calculation gives no information about the U or V parameters. As will be shown later, the V parameter remains
zero after scattering and will not be considered further [21]. The U parameter can be determined by using Eq. (2.3).
Simply rotate the outgoing basis vectors in the above calculation by �=4 and recalculate Q, which will be equal to U
in the original coordinate system. The result is U = 0. These results can alternatively be obtained from the physical
description of the polarization state in Rayleigh scattering [21]. Note that Eq. (2.7b) gives the well-known result that
sunlight from the horizon at midday is linearly polarized parallel to the horizon.
The total scattered intensities are determined by integrating over all incoming intensities. Note that the outgoing U

and Q ux from a given incoming direction must always be rotated into a common coordinate system, using Eq. (2.3).
The result is

I=
3�T
16�

Z
d
 (1+ cos2 �)I0(�; �); (2.8a)

Q=
3�T
16�

Z
d
 sin2 � cos(2�)I0(�; �); (2.8b)

U= �3�T
16�

Z
d
 sin2 � sin(2�)I0(�; �): (2.8c)

The outgoing polarization state depends only on the intensity distribution of the unpolarized incident radiation.
Expanding the incident intensity in spherical harmonics,

I0(�; �) =
X
lm

almYlm(�; �); (2.9)

leads to the following expressions for the outgoing Stokes parameters:

I=
3�T
16�

�
8

3

p
� a00 +

4

3

r
�

5
a20

�
; (2.10a)

Q=
3�T
4�

r
2�

15
Re a22; (2.10b)
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FIG. 2. The quadrupolar components of the incident intensity distribution. Any orientation of a quadrupolar distribution
can be written as the sum of these two distributions. The small arrows indicate the corresponding uid velocity in a tightly
coupled uid.

U= �3�T
4�

r
2�

15
Ima22: (2.10c)

Thus scattering generates polarization from initially unpolarized radiation if the radiation intensity at a given point
as a function of direction has a non-zero component of Y22.
This particular form for the source of polarization leads to a correlation of the direction of the polarization vector P

with hot and cold spots on the cosmic microwave sky [20]. Consider a given region on the last scattering surface with
a spherical mass overdensity; the electron-photon uid will have a bulk velocity towards the center of the overdense
region with a velocity gradient away from the center (material further from the center will be falling inwards more
quickly). In the frame of some particular scattering point away from the center, the uid velocity in towards the point
is greater along the radial direction than perpendicular to it, resulting in a quadrupolar radiation intensity variation
with the largest intensity along the radial direction (see Figure 2). Choose an observation direction at a right angle to
the radial direction and take this direction to be the polar axis. Then the radiation intensity at the scattering point
will have a component proportional to cos(2�� 2�) with a positive coe�cient, where � is the radial direction. The
scattered Q intensity is proportional to the cos(2�) dependence of the incident intensity and the scattered U intensity
is proportional to the sin(2�) piece, by Eqs. (2.9) and (2.10). Thus �, the direction of P in Eq. (2.4), lies along �,
the radial direction. For the opposite situation, that of a mass underdensity, all the velocities change sign, so both
Q and U change sign and the direction of P changes by �=2. When the dominant contribution to the temperature
uctuations is a gravitational potential di�erence (Sachs-Wolfe e�ect [29]), a mass overdensity corresponds to a cold
spot in the microwave background; in this case cold spots will have radially correlated polarization and hot spots
tangentially correlated polarization, in agreement with the result of Ref. [20]. For adiabatic acoustic oscillations, the
density and velocity perturbations are out of phase so no speci�c correlation results.

C. Photon Description

The Stokes parameters can be de�ned equivalently in terms of a quantum-mechanical description. The polarization
state space of a photon is spanned by a pair of basis vectors, which we take to be the orthogonal linear polarizations
j�1i and j�2i. For a photon propogating in the z-direction, the basis states j�1i and j�2i are oriented like the x and y
axes, respectively. An arbitrary state is given by

j�i = a1e
i�1 j�1i + a2e

i�2 j�2i: (2.11)
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The quantum-mechanical operators in the linear basis corresponding to each Stokes parameter are given by

Î = j�1ih�1j+ j�2ih�2j; (2.12a)

Q̂= j�1ih�1j � j�2ih�2j; (2.12b)

Û= j�1ih�2j+ j�2ih�1j; (2.12c)

V̂ = ij�2ih�1j � ij�1ih�2j: (2.12d)

The single-particle state expectation values of these operators reproduce the de�nitions (2.2). For photons in a
general mixed state de�ned by a density matrix �, the expectation value for the I Stokes parameter is given by

hIi = tr �Î = tr

�
�11 �12
�21 �22

��
1 0
0 1

�
= �11 + �22 (2.13)

and similarly for the other three parameters. These relations thus give the density matrix in the linear polarization
basis in terms of the Stokes parameters as

�=
1

2

�
I +Q U � iV
U + iV I � Q

�
(2.14)

=
1

2
(I11 + Q�3 + U�1 + V �2) (2.15)

where 11 is the identity matrix and �i are the Pauli spin matrices. Thus the density matrix for a system of photons
contains the same information as the four Stokes parameters, and the time evolution of the density matrix gives the
time evolution of the system's polarization.

III. EVOLUTION EQUATION FOR THE NUMBER OPERATOR

This section considers the quantum number operator for a system of particles and derives its evolution equation,
including local particle interactions. Taking the expectation value of the operator equation gives the Boltzmann
equation for the system's density matrix, which is a generalization of the usual classical Boltzmann equation for
particle occupation numbers (the diagonal elements of the density matrix). The derivation here applies techniques
previously developed in the context of neutrino mixing [23,30].
We adopt second-quantized formalism with creation and annihilation operators for photons and electrons obeying

the canonical commutation relations

[as(p); a
y
s0(p0)]= (2�)32p0�3(p� p0)�ss0 ; (3.1)

fbr(q); byr0(q0)g= (2�)3
q0

m
�3(q� q0)�rr0 ; (3.2)

where s labels the photon polarization and r labels the electron spin; bold momentum variables represent three-
momenta while plain momentum variables represent four-momenta. The density operator describing a system of
photons is given by

�̂ =

Z
d3p0

(2�)3
�ij(p

0)ayi (p
0)aj(p

0); (3.3)

where �ij is the density matrix. The particular operator for which we want the equation of motion is the photon
number operator

Dij(k) � ayi (k)aj(k): (3.4)

The expectation value of D is proportional to the density matrix, as seen by direct calculation:

hDij(k)i = tr [�̂Dij(k)] =

Z
d3p

(2�)3
hpj�̂Dij(k)jpi = (2�)3�(0)2k0�ij(k): (3.5)

The last equality results from repeated application of the commutation relation Eq. (3.2); the in�nite delta function
results from the in�nite quantization volume necessary with continuous momentum variables, and cancels out of all
physical results.
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The time evolution of the operator Dij , considered in the Heisenberg picture, is

d

dt
Dij = i [H;Dij] (3.6)

where H is the full Hamiltonian. We write the Hamiltonian as a sum of the free �eld piece plus an interaction term:

H = H0 +HI (3.7)

where the interaction piece is a functional of the full �elds in the problem. Our goal is to express the right side of
Eq. (3.6) as a perturbation series in the interaction Hamiltonian HI. We make the usual assumption of scattering
theory that in a given interaction the �elds begin as free �elds and end as other free �elds, and the interactions are
isolated from each other. Consider the evolution of an operator through a single interaction beginning at t = 0: before
this time, the �elds can be taken as free to a good approximation; at t = 0 the interaction Hamiltonian begins to turn
on, and the interaction �nishes at some later time, after which the �elds can be taken as free once again. Then the
time dependence of an arbitrary operator � to �rst order in the interaction Hamiltonian can be expressed as [23]

�(t) = �0(t) + i

Z t

0

dt0
�
H0
I (t � t0); �0(t)

�
; (3.8)

where �0(t) is the free-�eld operator with initial condition �0(0) = �(0), and H0
I is the interaction Hamiltonian as a

functional of the free �elds.
Equation (3.8) can be proven as follows. The time derivative of both sides gives

d

dt
�(t) =

d

dt
�0(t) + i

�
H0
I (0); �

0(t)
�
+ i

Z t

0

dt0
d

dt

�
H0
i (t� t0); �0(t)

�
: (3.9)

The time derivatives in the �rst and third term on the right side can be replaced by commutators with H(t) using
the Heisenberg equation. But these two terms depend only on free �elds which are evolved with the free Hamiltonian
H0(t) = H0(0). Equation (3.9) becomes

d

dt
�(t) = i

�
H0
I (0); �

0(t)
�
+ i [H0(0); �(t)] ; (3.10)

and so to �rst order in HI this just gives the Heisenberg equation for the operator �.
Now we can express the time evolution of Dij in terms of free �eld operators. Applying Eq. (3.8) to the commutator

on the right side of Eq. (3.6) gives

d

dt
Dij(k) = i

�
H0
I (t);D0

ij(k)
� � Z t

0

dt0
�
H0
I (t � t0);

�
H0
I (t);D0

ij(k)
��
: (3.11)

The integral on the right side can be cast in a more practical form by making the following physical assumption: the
duration of each collision (the time interval over which the interaction Hamiltonian is non-negligible, on the order of
the inverse energy transfer) is small compared to the time scale for variation of the density matrix (on the order of
the inverse collision frequency). The collision process relevant to the microwave background is Compton scattering o�
electrons, and for the cosmological epoch of interest, the electron density is always low enough for this condition to
be easily satis�ed. Then the time step t in Eq. (3.11) can be chosen large compared with a single collision and small
compared to the time scale for density matrix evolution. After extending the time integral to in�nity and taking the
expectation value of both sides, we �nd [23]

(2�)3�(0)2k0
d

dt
�ij(k) = i


�
H0
I (t);D0

ij(k)
��� 1

2

Z 1

�1

dt

�
H0
I (t);

�
H0
I (0);D0

ij(k)
���

: (3.12)

Here the integral from zero to in�nity has been replaced by an integral over all time; the di�erence is a principle part
integral which is second-order in the interaction Hamiltonian and thus ignored.
Equation (3.12) is the Boltzmann equation for the density matrix �ij . The �rst term on the right side is a forward

scattering term which is responsible for the MSW e�ect in a neutrino ensemble [30]; for photons this term is zero,
as will be shown below. The second term on the right side is the usual collision term. The time integral over the
free �eld time dependence enforces energy conservation in each collision. The interaction Hamiltonian will in most
cases depend on background �elds; for example, in the case of the microwave background the Compton scattering
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collisions are essentially four-point interactions quadratic in both the photon �eld and the electron �eld. In principle,
a second coupled equation for the electron density matrix must be solved simultaneously. However, in many physical
situations, the background �elds may be assumed to have a �xed distribution, generally thermal. In the early universe,
the electrons maintain a thermal distribution to a very high approximation and the evolution of their density matrix
becomes trivial.
The derivation of Eq. (3.12) has been completely general. In the appropriate limit the classical equations of radiative

transfer are reproduced; the advantage to the current approach is that it provides the same formal framework for
treating polarized photons as for treating neutrinos or any other particle species governed by the Boltzmann equation.
It also gives a systematic method for analyzing all higher-order e�ects. This Boltzmann equation has previously been
applied to neutrinos interacting through both charged and neutral current processes in supernovae [31].

IV. APPLICATION TO COMPTON SCATTERING OF PHOTONS

In principle, the complete evolution of the cosmic microwave background is determined by Eq. (3.12), generalized
slightly to include spatial dependence of all quantities. In this work this space dependence will simply be put in
by hand when taking expectation values and assumed implicitly; more formally it can be included through Wigner
functions, describing a joint space-momentum distribution [32]. All that remains to be done is substitution of the
correct interaction Hamiltonian and simpli�cation of the right side. General relativistic terms emerge from the total
time derivative on the left side; these will be treated in detail in Sec. V.
Microwave background photons interact with all charged particles. However, the rate of scattering varies with

the mass of the charged particle as the inverse mass squared; thus it is an excellent approximation to consider only
Compton scattering o� electrons and ignore baryons. This section proceeds with evaluation of the right side of
Eq. (3.12) for Compton scattering.

A. Interaction Hamiltonian

The interaction Hamiltonian density for the fundamental three-point interaction of QED is given by [27]

HQED(x) = �e : � (x)/A(x) (x) : (4.1)

where  is the electron �eld operator, A� is the photon �eld operator, a slash indicates contraction with �, and the
colons signify normal ordering of the operator product. The interaction Hamiltonian is the density integrated over all
of space:

HQED(t) =

Z
d3xHQED(x): (4.2)

The scattering matrix describing all scattering processes in QED is given in terms of the interaction Hamiltonian by

S =
1X
n=0

S(n) �
1X
n=0

(�i)n
n!

Z
d4x1 : : :d

4xnTfHQED(x1) : : :HQED(xn)g (4.3)

where T signi�es a time-ordered product. The nth term in the series represents all scattering processes with n
interaction vertices. Compton scattering is thus contained in the n = 2 term of the scattering matrix. Comparing the
n = 2 term with the n = 1 term gives the interaction Hamiltonian for second-order scattering processes:

S(2)= �1

2

Z 1

�1

dt

Z 1

�1

dt0TfHQED(t)HQED(t
0)g

� �i
Z 1

�1

dtH(2)(t): (4.4)

Using Wick's theorem to simplify the time-ordered product and denoting the piece of H(2) describing Compton
scattering by HI yields

HI(t) = e2
Z 1

�1

dt0
Z
d3x0 � �(x)�SF (x� x0)�

h
A�� (x)A

+
� (x

0) +A�� (x
0)A+

� (x)
i
 +(x0) (4.5)
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where SF is the Feynman propagator for the electron, and  + ( � �) and A+ (A�) are linear in absorption (creation)
operators of electrons and photons respectively. Fourier transforms of the �elds and propagator are de�ned using the
following conventions:

A�(x) =

Z
d3k

(2�)32k0

X
s

�
as(k)"

�
s (k)e

�ik�x + ays(k)"
��
s (k)eik�x

�
; (4.6a)

� �(x) =

Z
d3k

(2�)3
m

k0

X
r

byr(k)�ur(k)e
ik�x; (4.6b)

 +(x) =

Z
d3k

(2�)3
m

k0

X
r

br(k)ur(k)e
�ik�x; (4.6c)

SF (x) =

Z
d4k

(2�)4
/k +m

k2 �m2 + i0
e�ik�x; (4.6d)

where ur(k) is a spinor solution to the Dirac equation with spin index r = 1; 2 and "�s (k) are photon polarization
four-vectors, chosen to be real, with index s = 1; 2 labeling the physical transverse polarizations of the photon. The
summation convention over repeated spin and polarization indices is always implied. The Fourier-space interaction
Hamiltonian is obtained by substituting Eqs. (4.6) into Eq. (4.5). The distributional identityZ

d4xeik�x = (2�)4�4(k) (4.7)

allows trivial integration over the four-momentum of the electron propagator. The resulting interaction Hamiltonian
is

H0
I (t)=

Z
dq dq0dp dp0(2�)3�3(q0 + p0 � q � p) exp

h
it(q0

0
+ p0

0 � q0 � p0)
i

�
h
byr0(q0)a

y
s0(p0) (M1 +M2) as(p)br(q)

i
; (4.8)

M�M1 +M2; (4.9a)

M1(q
0r0; p0s0; qr; ps) � e2

�ur0(q0)"=s0(p0)(/p + q=+m)"=s(p)ur(q)

2(p � q) ; (4.9b)

M2(q
0r0; p0s0; qr; ps) � �e2 �ur0 (q0)"=s0(p0)(q=� /p0 +m)"=s(p)ur(q)

2(p0 � q) ; (4.9c)

with the abbreviations

dq � d3q

(2�)3
m

q0
; dp � d3p

(2�)32p0
(4.10)

for electrons and photons respectively. All of the operators in Eq. (4.8) are free-�eld operators, so this is the proper
expression to substitute into the left side of Eq. (3.12).
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B. Forward Scattering Term

We now proceed to evaluate the �rst term on the left side of Eq. (3.12). First we display operator expectation values
needed here and in the following subsection, using operator de�nitions and the commutation relations, Eq. (3.2):

ha1a2 � � �b1b2 � � �i = ha1a2 � � �i hb1b2 � � �i (4.11a)

haym(p0)an(p)i = 2p0(2�)3�3(p� p0)�mn(p) (4.11b)

hbym(q0)bn(q)i =
q0

m
(2�)3�3(q� q0)�mn

1

2
ne(q) (4.11c)

hbyr0

1

(q01)br
1

(q1)b
y

r0

2

(q02)br
2

(q2)i= q01q
0
2

m2
(2�)6�3(q1 � q01)�3(q2 � q02)�r

1
r0

1

�r
2
r0

2

1

4
ne(q1)ne(q2)

+
q01q

0
2

m2
(2�)6�3(q1 � q02)�3(q2 � q01)�r1r0

2

�r2r0

1

1

2
ne(q2)

�
1� 1

2
ne(q1)

�
(4.11d)

hays0

1

(p01)as1(p1)a
y

s0

2

(p02)as2(p2)i= 4p01p
0
2(2�)

6�3(p1 � p01)�3(p2 � p02)�s1s0

1

(p1)�s2s0

2

(p2)

+4p01p
0
2(2�)

6�3(p1 � p02)�3(p2 � p01)�s0

1
s2(p2)

�
�s1s0

2

+ �s1s0

2

(p1)
�
: (4.11e)

The last relationship neglects the correlation term between all four operators when p01 = p1 = p02 = p2. The
expectation values for electron operators assumes a particular form for the electron density matrix appropriate to
thermal equilibrium, with equal populations in each spin state and no correlations between the states; ne(q) represents
the number density of electrons of momentum q per unit volume. This assumed form for the electron density matrix
will not be valid if substantial magnetic �elds are present.
Using the de�nitions (3.4) and (4.8) and the commutation relations (3.2) the commutator in the forward scattering

term becomes �
H0
I (0);D0

ij(k)
�
=

Z
dq dq0dp dp0(2�)3�3(q0 + p0 � q� p) (M1 +M2)

� �
byr0 (q0)br(q)a

y
s0(p0)aj(k)2p

0(2�)3�is�
3(p� k)

�byr0 (q0)br(q)a
y
i (k)as(p)2p

00(2�)3�js0�3(p0 � k)�: (4.12)

On using the above expectation values, it follows that

i

�
H0
I (0);D0

ij(k)
��
=
ie2

4

Z
dq

ne(q)

k � q (�is�s0j(k)� �js0�is(k))

��ur(q) ["=s0(k)(/k + q=+m)"=s(k) � "=s(k)(q=� /k +m)"=s0(k)]ur(q); (4.13)

where the integrals have been performed with the delta functions. All of the terms involving /k cancel out on using
the gamma-matrix identity /A/B = 2A �B � /B /A and the polarization vector properties k � "i(k) = 0 and "i � "j = ��ij .
For the remaining terms we use the identity

�ur(q)"=s(q=+m)"=s0ur(q)= �ur(q)(2q � "s � q="=s +m"=s)"=s0ur(q)

= 2q � "s�ur(q)"=s0ur(q)

=
2

m
(q � "s)(q � "s0)

= �ur(q)"=s0(q=+m)"=sur(q); (4.14)

where the second equality follows from the Dirac equation and the third equality uses the Gordon identity. Thus we
have

i

�
H0
I (0);D0

ij(k)
��

= 0 (4.15)

and the forward scattering term does not contribute to the photon density matrix evolution.
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C. Scattering Term

The scattering term is considerably more cumbersome to evaluate, being quadratic in the interaction Hamiltonian.
After substituting the expressions for HI and Dij and taking the expectation value, the scattering term reads

1

2

Z 1

�1

dt

�
H0
I (t); [H

0
I (0);D0

ij(k)]
��

=

Z
dq1dq

0
1dp1dp

0
1dq2dq

0
2dp2dp

0
2

� (2�)7�3(q01 + p01 � q1 � p1)�4(q02 + p02 � q2 � p2)M(1)M(2)

�
(
p01(2�)

3�is
1

�3(p1 � k)
D
byr0

2

(q02)br
2

(q2)b
y

r0

1

(q01)br
1

(q1)
E D

ays0

2

(p02)as
2

(p2)a
y

s0

1

(p01)aj(k)
E

�p01(2�)3�is
1

�3(p1 � k)
D
byr0

1

(q01)br
1

(q1)b
y

r0

2

(q02)br
2

(q2)
E D

ays0

1

(p01)aj(k)a
y

s0

2

(p02)as
2

(p2)
E

�p010(2�)3�js0

1

�3(p01 � k)
D
byr0

2

(q02)br
2

(q2)b
y

r0

1

(q01)br
1

(q1)
ED

ays0

2

(p02)as
2

(p2)a
y
i (k)as1(p1)

E

+p01
0
(2�)3�js0

1

�3(p01 � k)
D
byr0

1

(q01)br
1

(q1)b
y

r0

2

(q02)br
2

(q2)
ED

ayi (k)as1(p1)a
y

s0

2

(p02)as
2

(p2)
E)

: (4.16)

The energy delta function comes from the time integral on using Eq. (4.7). The arguments of the matrix element
indicates the subscript to be attached to all dependent variables in Eq. (4.9), and of course summation over all spin
and polarization indices is implied.
Substitution of the expectation values Eq. (4.11) into the above expression and performing the integrals over q02,

p02, q2 and p2 using the various delta functions yields

1

2

Z 1

�1

dt

�
H0
I (t); [H

0
I (0);D0

ij(k)]
��

=
1

4
(2�)3�3(0)

Z
dq dq0dp0(2�)4�4(q0 + p0 � q � k)M(q0r0; p0s01; qr; ks1)M(qr; ks02; q

0r0; p0s2)

��ne(q)�is
1

�s
2
s0

1

�s0

2
j(k)� ne(q

0)�is
1

�js0

2

�s0

1
s
2

(p0)
�

+
1

4
(2�)3�3(0)

Z
dq dq0dp(2�)4�4(q0 + k � q � p)M(q0r0; ks01; qr; ps1)M(qr; ps02; q

0r0; ks2)

��ne(q0)�js0

1

�s
1
s0

2

�is
2

(k) � ne(q)�js0

1

�is
2

�s0

2
s
1

(p)
�
: (4.17)

The subscript \1" on all momentum variables has been dropped for notational simplicity. All terms quadratic in the
electron phase-space density have been dropped since for all cosmological scenarios this number is negligible compared
to unity; all terms quadratic in the photon density matrix cancel exactly. By relabeling the integration variables and
spin indices (implicitly summed over) in the second integral, Eq. (4.17) reduces to

1

2

Z 1

�1

dt

�
H0
I (t); [H

0
I (0);D0

ij(k)]
��

=
1

4
(2�)3�3(0)

Z
dq dq0dp0(2�)4�4(q0 + p0 � q � k)M(q0r0; p0s01; qr; ks1)M(qr; ks02; q

0r0; p0s2)

��ne(q)�s
2
s0

1

�
�is

1

�s0

2
j(k) + �js0

2

�is
1

(k)
� � 2ne(q

0)�is
1

�js0

2

�s0

1
s
2

(p0)
�
: (4.18)

This equation is an essentially exact expression for the collision term in the case of the microwave background: the
approximation that the duration of the Compton scattering be small compared to the time between scatterings is
eminently satis�ed for any cosmological scenario, and assuming the electrons to be unpolarized is essentially exact
unless magnetic �elds become important at some epoch.
Evaluating the matrix elements and performing the integrals in Eq. (4.18) is a straightforward process. This paper

is concerned with the �rst-order perturbations away from a perfectly homogeneous and isotropic universe, and the
scattering term will be explicitly calculated to �rst order. Evaluating the matrix elements involves standard techniques
of quantum �eld theory and yields the familiar Compton cross-section to lowest order:
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X
rr0

M(q0r0; ps01; qr; ks1)M(qr; ks02; q
0r0; ps02)

= 2e4

"�
q � k
q � p +

q � p
q � k

��
"s

1

(k) � "s0

1

(p)"s
2

(p) � "s0

2

(k) � "s
1

(k) � "s
2

(p)"s0

1

(p) � "s0

2

(k) + �s
1
s0

2

�s0

1
s
2

�

+2
�
"s

1

(k) � "s0

1

(p)"s
2

(p) � "s0

2

(k) + "s
1

(k) � "s
2

(p)"s0

1

(p) � "s0

2

(k) � �s
1
s0

2

�s0

1
s
2

�#
:

(4.19)

The following subsection then obtains the general Boltzmann equation for the photon density matrix to �rst order in
terms of the photon energy and polarization vectors.

D. Scattering Term to First Order

Now we proceed to evaluate Eq. (4.18) to lowest order in scattering kinematics. After substituting the matrix
element Eq. (4.19) into Eq. (4.18), the Boltzmann equation (3.12), now explicitly including spatial dependence,
becomes

d

dt
�ij(x;k)= � e4

16m2k

Z
dq dp

m

E(q+ k� p) (2�)�
�
E(q+ k� p) + p� E(q)� k

�
�
�
ne(x;q)�s

2
s0

1

�
�is

1

�s0

2
j(x;k) + �js0

2

�is
1

(x;k)
� � 2ne(x;q

0)�is
1

�js0

2

�s0

1
s
2

(x;p0)
�

�
"�

q � p
q � k +

q � k
q � p

��
"s0

1

(p) � "s
1

(k) "s0

2

(k) � "s
2

(p)� "s
1

(k) � "s
2

(p) "s0

1

(p) � "s0

2

(k) + �s0

1
s
2

�s
1
s0

2

�

+2
�
"s0

1

(p) � "s
1

(k) "s0

2

(k) � "s
2

(p) + "s
1

(k) � "s
2

(p) "s0

1

(p) � "s0

2

(k) � �s0

1
s
2

�s
1
s0

2

�#
(4.20)

where E(q) = (q2 + m2)1=2 is the energy of an electron with momentum q. The electrons are described by an
unpolarized thermal Maxwell-Boltzmann distribution:

ne(x;q) = ne(x)

�
2�

mTe

�3=2
exp

"
� (q �mv(x))2

2mTe

#
; (4.21)

with Te the electron temperature and v(x) the electron bulk velocity. Useful integrals of the electron distribution are

Z
d3q

(2�)3
ne(x;q) = ne(x); (4.22a)

Z
d3q

(2�)3
qine(x;q) = mvi(x)ne(x): (4.22b)

For relevant cosmological situations, the kinetic energies of the electrons and photons are negligible compared to the
electron mass, implying that the energy transfer in a Compton scattering event is small compared to the characteristic
photon energy: p � m, q � m (with obvious abbreviations p = p0 = jpj and q = jqj). Furthermore, if the electron
and photon temperatures are comparable, p� q. We expand the various functions in Eq. (4.20) in terms of p=q and
q=m, using the following asymptotic expansions:

E(q +Q) � m

�
1 +

q2

m2
+
q �Q
m2

+
Q2

2m2
+ � � �

�
; (4.23a)

ne(q +Q) � ne(q)

�
1� Q � (q �mv)

mTe
� Q2

2mTe
+ � � �

�
; (4.23b)
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� (k � p +E(q) �E(q + k � p)) � �(k � p) + (k � p) � q
m

@�(k � p)
@p

+ � � � ; (4.23c)

where in the last expression the derivative of the delta functional is de�ned through integration by parts [33]. Writing
out the polarization sums explicitly yields the equation

d

dt
�ij(x;k) =

e4ne(x)

16�m2k

Z 1

0

dp p

Z
d


4�

�
�(k � p) + (k� p) � v(x)@�(k � p)

@p

�

�
(
�2

�
p

k
+
k

p

�
�ij(x;k) + 4p̂ � "̂i(k) p̂ � "̂1(k) �1j(x;k) + 4p̂ � "̂i(k) p̂ � "̂2(k) �2j(x;k)

+

�
p

k
+
k

p
� 2

�
�ij

�
�11(x;p) + �22(x;p)

�

+

�
p

k
+
k

p

��
"i(k) � "1(p) "j(k) � "2(p)� "i(k) � "2(p) "j(k) � "1(p)

��
�12(x;p)� �21(x;p)

�
+2
�
"i(k) � "1(p) "j(k) � "2(p) + "i(k) � "2(p) "j(k) � "1(p)

��
�12(x;p) + �21(x;p)

�

+4"i(k) � "1(p) "j(k) � "1(p) �11(x;p) + 4"i(k) � "2(p) "j(k) � "2(p) �22(x;p)
)

(4.24)

Here the photon momentum integral has been rewritten as an energy integral and an angular integral over the
momentum direction. This is the basic equation describing the evolution of the photon density matrix to �rst order
in the kinematic variables. By rewriting the momentum and polarization vectors in a spherical coordinate basis and
incorporating the velocity-dependent term into the left-hand side, the equation becomes equivalent to Chandrasekhar's
radiative transfer formalism; cf. Chapter 1, Eq. (212) of Ref. [21]. Before performing the �nal angular integrals, we
must consider the left side of the equation for the particular space-time geometry in which we are interested, which
determines the azimuthal dependence of �. The left side of the equation will be analyzed in the following section, and
then in Section VI we perform the remaining momentum integrals to complete the evaluation of the right side.

V. THE GENERAL-RELATIVISTIC LIOUVILLE EQUATION

The last section has analyzed the right side of the Boltzmann equation, Eq. (3.12); we now turn to the left side,
describing the propogation of photons in the background space-time. The Boltzmann equation with no collision term
on the right side is the Liouville equation, describing the evolution of a collisionless system's phase space distribution.
Writing the equation has already assumed de�nition of a set of space-like hypersurfaces; that is, the equation contains
an explicit time derivative. The background space-time here will be the canonical Friedmann-Robertson-Walker
(FRW) space-time. In this paper only the at case will be considered; techniques pertaining to open universes have
also been extensively developed [34]. Scalar and tensor metric perturbations are added to the at background space-
time; we neglect vector perturbations, which kinematically decay and are unimportant unless a continual source of
vector perturbations, such as topological defects, exists. The metric we consider is

g00 = 1 + 2�(x; t); g0i = 0; (5.1)

gij = �a2(t)��1� 2	(x; t)
�
�ij + hij(x; t)

�
: (5.2)

In this section, Greek subscripts refer to space-time indices running from 0 to 3 while Roman subscripts refer to
spatial indices running from 1 to 3. The function a(t) is the usual cosmological scale factor. The scalar perturbations,
de�ned in the longitudinal gauge, are given by the two scalar function � and 	 [26]. The metric perturbations hij
are de�ned in the transverse-traceless gauge and are subject to the constraints

hi
i = 0; @jhij = 0: (5.3)

With the perturbations de�ned in this way, no residual gauge freedom remains, in contrast to the more conventional
synchronous gauge condition. A second advantage of the present de�nition is that in the Newtonian limit, the metric
perturbation � simply corresponds to the Newtonian potential. The inverse metric to �rst order in the perturbations
is
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g00 = 1� 2�(x; t); g0i = 0; (5.4)

gij = � 1

a2(t)

��
1 + 2	(x; t)

�
�ij � hij(x; t)

�
: (5.5)

In this section we will consider the Liouville equation to �rst order in the metric perturbations; second-order treatments
have been undertaken in Ref. [35].
Photons are described by space-time coordinate x� and four-momentum k�. Our coordinate system has x0 � t;

the photon momentum satis�es

ki

k0
=
dxi

dt
: (5.6)

The photons obey the geodesic equation

d2x�

d�2
+ ����

dx�

d�

dx�

d�
= 0; (5.7)

g��
dx�

d�

dx�

d�
= 0; (5.8)

where � is an a�ne parameter along the photon geodesic, which may be de�ned so that dt=d� � dx0=d� = k0; thus
dxi=d� = ki using Eq. (5.6). Therefore, using the de�nition of the Christo�el symbol �,

dk�

dt
= g��

�
1

2

@g��
@x�

� @g��
@x�

�
k�k�

k0
(5.9)

with the geodesic condition k�k� = 0 .
Liouville's equation for any phase-space distribution function f is

df

dt
=

@f

@x�
dx�

dt
+

@f

@k�
dk�

dt
=
@f

@t
+
@f

@xi
ki

k0
+

@f

@k�
dk�

dt
= 0: (5.10)

We change to a convenient choice of momentum variables, the photon energy in a local orthonormal frame k �
(�kiki)1=2 and the unit vector k̂i. A local observer at rest with respect to the cosmic coordinate system will measure
the photon to have energy k; this is the energy appearing in the collision term on the right side of the Boltzmann
Equation. The wave vector is thus given by

ki =
1

a
kk̂i

�
1 + 	 � 1

2
k̂mk̂nhmn

�
; (5.11)

and the Liouville equation in the new variables is

df

dt
=
@f

@t
+
@f

@xi
ki

k0
+
@f

@k

dk

dt
+
@f

@k̂i
dk̂i

dt
= 0: (5.12)

Now it is a straightforward matter to calculate the derivatives dk=dt and dk̂i=dt. Substituting k0 = k(1� �) and
Eq. (5.11) into the zero component of Eq. (5.9) gives to �rst order

dk

dt
= �k

"
_a

a
� @	

@t
+
k̂i

a

@�

@xi
+
1

2
k̂ik̂j

@hij
@t

#
: (5.13)

The derivative of k̂i is most easily computed by di�erentiating Eq. (5.11) and equating this result with Eq. (5.9); it is

straightforward to show that dk̂i=dt has no lowest-order terms. Physically, this is because geodesics are straight lines

in the unperturbed metric. Since @f=@k̂i is itself linear in the metric perturbations, the �nal term of the Liouville
equation drops out to �rst order. Expanding the distribution function as

f(x; k; k̂; t) = f (0)(k; t) + f (1)(x; k; k̂; t) (5.14)
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leads to the zeroth-order equation

@f (0)

@t
� _a

a
k
@f (0)

@k
= 0 (5.15)

whose solution is simply f (0)(k; t) = f (0)(ka), which is just the uniform redshift of the spectrum with cosmic expansion.
The �rst-order Liouville equation is

@f (1)

@t
+
@f (1)

@xi
k̂i

a
� _a

a
k
@f (1)

@k
+
@f (0)

@k
k

"
@	

@t
� k̂i

a

@�

@xi
� 1

2
k̂ik̂j

@hij
@t

#
= 0: (5.16)

Note that k in this equation is the physical, not the comoving, photon wave number.
The terms in the Liouville equation depending directly on the metric perturbations determine the form of the

directional dependence of the distribution function. A Fourier transform over the spatial dependence of the equation
gives for the Boltzmann equation

@

@t
f (1)(K; k; k̂)+

i

a
(K � k̂)f (1)(K; k; k̂) � _a

a
k
@

@k
f (1)(K; k; k̂)

�@f
(0)(k)

@k
k

�
@

@t
�(K) � @

@t
	(K) +

i

a
(K � k̂)�(K) +

1

2
k̂ik̂j

@

@t
hij(K)

�
= C(K; k; k̂) (5.17)

where C represents the collision term on the right side. For scalar perturbations, the previous section shows the
right side contains source terms proportional to k̂ � v, where v is the local velocity of the electrons. But for scalar
perturbations, v / K [26], so if we choose spherical coordinates for k̂ with axis in the K direction, then f (1) is
manifestly independent of the azimuthal angle �; in other words,

f (1)(K; k; k̂) = f (1)(K; k; �) (5.18)

for scalar perturbations.
Tensor perturbations do depend on �, but in a simple manner. We neglect any electron velocity v arising from

tensor perturbations as corrections to the scalar-induced velocity. The � dependence of the distribution function is
determined by the perturbation term, which can be written as

k̂ik̂j
@

@t
hij(K; t) = k̂ik̂j

�
_h+(K; t)e+ij(K) + _h�(K; t)e�ij(K)

�
; (5.19)

where e+ij and e�ij are polarization tensors for the plus and cross polarizations of the gravity wave. Again, choose
spherical coordinates with the z-axis pointing in the direction ofK. In this coordinate system the polarization tensors
are given by e+xx = �e+yy = 1 and e�xy = e�yx = 1, with the other components zero. Contraction of the unit vectors
with the polarization tensors gives

k̂ik̂je+ij= sin2 � cos2 �� sin2 � sin2 � = sin2 � cos 2�;

k̂ik̂je�ij= 2 sin2 � cos � sin� = sin2 � sin 2�: (5.20)

Therefore, for a given plane wave component of a metric tensor perturbation,

f (1)(K; k; k̂) = f (1)(K; k; �) cos 2� (5.21a)

for the plus polarization of the gravity wave and

f (1)(K; k; k̂) = f (1)(K; k; �) sin 2� (5.21b)

for the cross polarization.

VI. COMPLETE POLARIZATION EQUATIONS

Now we have assembled all the ingredients for deriving the �nal polarization evolution equations: Eq. (4.24) with
the perturbation expansion for �ij given by Eq. (5.14) and the angular dependence of �ij given by Eqs. (5.18) and
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(5.21). Note the unperturbed photon density matrix satis�es �
(0)
11 = �

(0)
22 and �

(0)
12 = �

(0)
21 = 0, since it represents a

uniform unpolarized blackbody spectrum. The lowest-order term on the right side of Eq. (4.24) is zero; the resulting
equation for �(0) gives the uniform shift of the photon spectrum with scale factor in an expanding universe, Eq. (5.15).
The �rst order term gives

d
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: (6.1)

As in the previous section, K is the Fourier conjugate of x, and �ne is the mean electron density which is constant to
lowest order. The remainder of this section evaluates the remaining angular integrals in this expression and converts
the equations for the density matrix elements to equations for the brightness of each Stokes parameter.
To evaluate the angular integrals most conveniently, choose the z-axis of the spherical coordinate system to coincide

with K, independently for each Fourier mode. Note that on transforming back to real-space coordinates, care must
be taken because the density matrix is not invariant under a change of basis (see Sec. II). The basis for the photon
direction and polarization vectors is taken to be

k̂x = sin � cos � "̂1x(k) = cos � cos � "̂2x(k) = � sin�

k̂y = sin � sin� "̂1y(k) = cos � sin� "̂2y(k) = cos �

k̂z = cos � "̂1z(k) = � sin � "̂2z(k) = 0: (6.2)

The same de�nition is used for p and its associated polarization vectors, with � ! �0 and � ! �0. The angular
integral in Eq. (6.1) is over �0 and �0, and the various dot products are given by

p̂0 � "̂1(k)= sin �0 cos � cos(�0 � �)� cos �0 sin �;

p̂0 � "̂2(k)= sin �0 sin(�0 � �);
"̂1(k) � "̂1(p)= cos � cos �0 cos(�0 � �) + sin � sin �0;

"̂1(k) � "̂2(p)= � cos � sin(�0 � �);
"̂2(k) � "̂1(p)= cos �0 sin(�0 � �);

"̂2(k) � "̂2(p)= cos(�0 � �): (6.3)

Two additional convenient abbreviations are �0 � v̂ � p̂ = cos �0 and � � v̂ � k̂ = cos �. Now the angular integrals are
straightforward, resulting in expressions like

d
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(6.4)

for scalar perturbations, where dependence on the Fourier mode K is implicit. In solving the evolution equations, it
is convenient to split the density-matrix perturbation into two parts, one due to the scalar metric perturbations and
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one due to the tensor metric perturbation. In making this split, the bulk velocity v is entirely attributed to the scalar
perturbations.
For the �nal set of evolution equations, we change variables to comoving wave number q = ka, and convert the

density matrix elements to Stokes parameter brightness perturbations:

�i
I(K; q; �)�
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; (6.5a)
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; (6.5d)

where the superscript i stands for s,+, or �, representing the three types of possible metric perturbations: scalar and
two polarizations of tensor. For linear perturbations considered here, the distribution function undergoes no spectral
distortions and the perturbations are blackbody; in this case, �I=4 is just the temperature uctuation �T=T0 with
T0 the mean temperature. We also de�ne moments of these variables:

�i
Il(q) �

Z 1

�1

d�0

2
Pl(�

0)�i
I(q; �

0) (6.6)

where Pl is the Legendre polynomial of order l. Note these moments are sometimes de�ned di�erently [36,37] as
�(�) =

P
(�i)l�lPl.

For scalar perturbations, the brightness is governed by the set of equations [17]

@�s
I

@t
+

1

a
iK��s

I + 4

�
@	

@t
� 1

a
iK��

�
= ��T �ne

�
�s
I ��s

I0 + 4v� � 1

2
P2(�)(�

s
I2 +�s

Q2 ��s
Q0)

�
; (6.7a)

@�s
Q

@t
+

1

a
iK��s

Q= ��T �ne
�
�s
Q +

1

2
(1� P2(�))(�

s
I2 +�s

Q2 ��s
Q0)

�
; (6.7b)

@�s
U

@t
+

1

a
iK��s

U= ��T �ne�s
U ; (6.7c)

@�s
V

@t
+

1

a
iK��s

V= ��T �ne
�
�s
V �

3

2
��s

V 1

�
: (6.7d)

The evolution of the brightness thus does not depend on the direction of K, only on its magnitude; the brightness
depends on the direction of K only through initial conditions, which factor out of the linear evolution equations. The
equations for U and V have no source terms, so for each K the evolution leaves U = 0 and V = 0. The coordinate
dependence of Eq. (2.3) gives a non-zero U on transforming back to x space, but V remains zero.
For tensor perturbations, the evolution equations take their simplest form after the coordinate transformation [38]

�+
I = (1� �2) cos(2�) ~�+

I ; ��
I = (1� �2) sin(2�) ~��

I ; (6.8a)

�+
Q= (1 + �2) cos(2�) ~�+

Q; ��
Q = (1 + �2) sin(2�) ~��

Q; (6.8b)

�+
U= �2� sin(2�) ~�+

U ; ��
U = 2� cos(2�) ~��

U : (6.8c)

The � dependence is determined by Eqs. (5.21a) and (5.21b), and the � dependence is chosen to simplify the �nal
equations. After this change of variables, the brightness equations become [40]
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Q; (6.9c)
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The de�nition of h+ is given in Eq. (5.19). The � tensor perturbation gives same equations. Again, V = 0 since it
has no source term.
For a given cosmological scenario, which determines the metric perturbations, Eqs. (6.7) and (6.9) must be evolved

numerically. This can be done e�ciently by expanding the � dependence of the brightness functions in terms of
Legendre polynomials, Eq. (6.6), giving a large set of coupled ordinary di�erential equations [17]. Several detailed
codes to calculate temperature uctuations have been implemented using this scheme [4{7].

VII. POWER SPECTRA

Numerical solution of the above transport equations gives the Fourier space brightness functions �s
Il(K) and �s

Ql(K)

for scalar perturbations and ~��
Il(K) and ~��

Ul(K) for tensor perturbations, where � represents the two gravity wave
polarization states + and �. The temperature uctuations in real space are then

T (x; �; �)

T0
= 1 +

1

4

X
K

X
l
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0)eiK�x
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�s
Il(K) + sin2 �0 cos 2�0 ~�+

Il(K) + sin2 �0 sin 2�0 ~��
Il(K)

i
; (7.1)

where T0 is the mean temperature of the microwave background, and (�0; �0) represents the same direction as (�; �)
except in the coordinate system de�ned by the K direction.
The polarization is more complicated, because for each K mode the coordinate system in the direction (�; �) has

a di�erent orientation; when the Q and U brightnesses are summed up, the axes must be rotated to the orientation
in the x coordinate system, using Eq. (2.3). To determine this rotation angle for each K mode, refer to Fig. 3; the

needed angle is labelled �0, the angle between the vectors �̂ and �̂0. Let the direction of K be denoted by (�K ; �K).
On the unit sphere, the lengths of the sides of the spherical triangle ABC are just the angles they subtend. The angle
�0 is given by the law of cosines,

cos �0 = cos � cos �K + sin � sin �K cos(�K � �); (7.2)

and the rotation angle is

sin �0 = sin �K sin(�K � �) csc �0: (7.3)

Then the Q and U brightnesses are given by
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i
; (7.4)

and U the same except for the replacements cos �0 ! � sin �0 and sin �0 ! cos �0. From these two quantities, the
polarization vector P follows from Eq. (2.4) as
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FIG. 3. Angles and directions for determining the orientation of di�erent spherical coordinate bases at a given point.

The predictions of a given cosmological scenario are only statistical. The traditional statistical measure of temper-
ature uctuations is the angular power spectrum C(�), de�ned by

CTT (�) � 1 +

�
T (q̂1)

T0

T (q̂2)

T0

�
; q̂1 � q̂2 = cos �; (7.7)

where the angle brackets represent an ensemble average over initial conditions; this average can be replaced in calcu-
lations with an average over space, assuming ergodicity. Many analogous correlation functions for various polarization
variables are possible:

CTP (�)�
�
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T0
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�
; (7.8a)
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CT P(�)�
�
P(q̂1)

T0
� rT (q̂2)

T0

�
; (7.8d)

roughly in increasing order of di�culty to measure. The various combinations of Stokes parameters can also be used
to form correlations:

CQQ(�)�
�
Q(q̂1)

T0

Q(q̂2)

T0

�
; (7.9a)

CQT (�)�
�
Q(q̂1)

T0

T (q̂2)

T0

�
; (7.9b)

and so on. These correlation functions depend on the orientation of the axes used to de�ne the Stokes parameters.
Their advantage is that they are easier to calculate than Eqs. (7.8) and are easier to measure when signal to noise

19



is low; their disadvantage is that their physical interpretation is less easily visualized. Correlation functions are
commonly characterized by the coe�cients Cl of an expansion in Legendre polynomials:

CTT (�) =
1X
l=2

(2l + 1)

4�
CTT
l Pl(cos �) (7.10)

and likewise for the others. The l = 1 term, indistinguishable from the Doppler shift from proper motion with respect
to the rest frame of the microwave background, is ignored. Note this conventional normalization of Cl unfortunately
di�ers by a factor of 4� from the conventional normalization of the brightness moments, Eq. (6.6).

A. Temperature Correlation Functions

The temperature correlation function CTT (�) can be evaluated exactly in terms of the brightness moments. First,
since the equations for �(K) depend only on jKj, separate out the angular dependence by writing the uctuations as

�i
Il(K) = �i

Il(K)�i(K)ei�i(K); (7.11)

where i stands for s, +, or �. The functions �i and �i are random variables set by the initial conditions: �i is real and
positive, normalized such that

R
d
K�

2
i (K) = 4�, and the phase �i is a real number between 0 and 2�. For gaussian

initial conditions, �i is drawn from a normal distribution and �i is uniformly distributed, independently for each K
mode and each type of perturbation.
Substituting Eq. (7.1) into Eq. (7.7) provides the starting point for evaluating the temperature correlation functions.

The average value can be replaced by V �1
R
d3x, where V is the sample volume, and in the limit of a large volume

the sums over K vectors can be replaced by integrals:
P
K
! V=(2�)3

R
d3K. The x integral gives a delta functional

which eliminates one of the K integrals. For scalar perturbations, the result is�
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Then expressing each Legendre polynomial in terms of spherical harmonics using the spherical harmonic addition
formula and performing the angular piece of the K integral using the decomposition in Eq. (7.11) gives the familiar
formula
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For tensor perturbations, the added angular dependence makes the calculation somewhat more involved; in this
case, Eq. (7.12) becomes�
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The cross-terms between the two types of tensor perturbations (and between the tensor and scalar perturbations)
cancel because the integral over K contains random phase factors, e.g. exp(i�+(K)� i��(K)). Rearranging the terms
in brackets yields�
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Further progress can be made with the mild and physically reasonable assumption that ~�+
Il(K) = ~��

Il(K), in other
words that the power spectra for the two polarizations of gravity waves are the same. Then the two terms on the
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second line of the above equations give equal integrals and cancel. The remaining trigonometric functions can be
written in a form independent of �0 [41]:�
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where as in the scalar case the K integral has been separated into its magnitude and angular dependences, and
�01 = cos �01, etc. Now the evaluation and simpli�cation of the angular integral is a straightforward but lengthy
process. The various factors of � may be absorbed into the Legendre polynomials using the recursion relation

(2l + 1)xPl(x) = (l + 1)Pl+1(x) + lPl�1(x): (7.17)

The angular integral may be performed using the same procedure as in the scalar case: replace the Legendre poly-
nomials with spherical harmonics using the addition theorem, and use the orthogonality of the spherical harmonics
to eliminate the integrals. Then converting the remaining spherical harmonics back to Legendre polynomials gives
many terms proportional to Pl(q̂1 � q̂2) with various indices l. The original factors of q̂1 � q̂2 in Eq. (7.16) can now be
absorbed into the Legendre polynomials using the above recursion relation. At this point, the terms can be collected
together, and after much algebra the formula �nally simpli�es to [40]
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The total temperature correlation function is given by the sum of the scalar and tensor pieces as long as no correlation
exists between the two perturbations, as will be the case for any inationary scenario.

B. Polarization Correlation Functions

Direct evaluation of correlation functions involving polarization involves further complications. For correlations
involving the polarization vector P or its magnitude, substantial simpli�cation is not possible: since the polarization
vector is not linear in the Stokes parameters, the x integral (replacing the ensemble average) cannot be immediately
performed as in the temperature correlation functions above, and no progress can be made in simplifying the general
expressions for the correlation functions. The evaluation of Eqs. (7.8) must be performed numerically through, for
example, a Monte Carlo average over random pairs of directions separated by a �xed angle at a given point in space.
However, the correlation functions of the Stokes parameters themselves, Eqs. (7.9), can be simpli�ed if a small-angle

approximation is invoked. The additional approximation is needed because, in contrast with the temperature case,
the Q and U brightnesses have factors involving the rotation angle �0. Consider the hQQi correlation function, �rst for
scalar perturbations. Choose the axis of the spherical coordinate system to be one of the two observation directions.
As above, the ensemble average can be replaced by a space integration, which then eliminates one of the K integrals,
resulting in the expression�
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with q̂1 = ẑ, which implies �01 = �K and �01 = ��K . Now if q̂1 and q̂2 point nearly in the same direction, then
cos 2�01 � cos 2�02 � cos 2�K , using Eq. (7.3). Then the cosine factors in the above equation can be rewritten as
(1 + cos 4�K)=2. The �rst term then looks just like the temperature case considered earlier. The second term can be
somewhat simpli�ed by using the spherical harmonic summation formula to rewrite Pl2 and then explicitly performing
the integral over �K. The �nal result is

CQQ
l � V

16�

"Z 1

0

K2dK
���s

Ql(K)
��2

+
1

4
cos 4�

X
l1l2

(2l1 + 1)(2l2 + 1)
(l2 � 4)!

(l2 + 4)!
A4
ll2A

4
l1 l2

Z 1

0

K2dK�s�
Ql1(K)�s

Ql2 (K)

#
; (7.20)
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Am
l1l2 �

Z 1

�1

dxPl1(x)P
m
l2 (x);

where the sum over l2 begins at l2 = 4. Note the �nal result depends explicitly on the azimuthal angle � since the
value of Q changes if the axes are rotated.
For tensor perturbations, the drill is now familiar. The assumption that ~�+

Ql(K) = ~��
Ql(K) with the above small-

angle approximation gives the expression�
Q(q̂1)

T0

Q(q̂2)

T0

�
� V

128�3

X
l1 l2

(2l1 + 1)(2l2 + 1)

Z 1

0
K2dK ~�+�

Ql1
(K) ~�+

Q l2
(K)

�
Z
d
K

�
Pl1 (cos �

0
1)Pl2 (cos �

0
2)
�
(1 + cos2 �01)(1 + cos2 �02) cos

2 2�K + 4 cos �01 cos �
0
2 sin

2 2�K
��
: (7.21)

Then the factors of cos � can be absorbed into the Legendre polynomials using the recursion relation. The �nal
expression for tensor perturbations is

CQQ
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���B2
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1
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0
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; (7.22)

B1
l (K) � (l + 1) ~�+

l+1(K) + l ~�+
l�1(K);

B2
l (K) � (l + 2)(l + 1)

2l + 3
~�+
l+2(K) + 2

6l3 + 9l2 � l � 2

(2l + 3)(2l + 1)
~�+
l (K) +

l(l � 1)

2l � 1
~�+
l�2(K):

The expressions for hQT i can be obtained in the same way; they are given in Ref. [43]. For gaussian initial
perturbations, the polarization map can be reconstructed from the temperature map and the correlation functions
hQQi and hQT i, as shown in Ref. [20]. In principle, all of the correlation functions involving the polarization vector are
obtainable from these as well, although there appear to be no simple formulas connecting the two sets of correlation
functions.

VIII. DISCUSSION

The detection of microwave background polarization is very di�cult. The most optimistic scenarios predict polar-
ization no larger than 10% of the temperature uctuations, or a few parts in a million of the temperature. Needless
to say, this sensitivity is hard to attain. The same backgrounds which a�ect the temperature measurements will also
a�ect polarization measurements. One advantage of measuring polarization which has been realized for a long time is
that the experiment can chop between two orthogonal polarizations on the same patch of sky, which involves rotating
a polarizer, instead of mechanically repointing the telescope. In practice, temperature measurements can only chop at
a few Hz, while polarization measurements can chop at hundreds of Hz. Any atmospheric noise is thus supressed much
more e�ectively. A mitigating e�ect is that since the orientation of the horn is important, side lobes from the ground
and di�raction e�ects can add noise di�erently to the two polarization channels. As with temperature measurements,
the ultimate experimental limit is astrophysical foreground sources, particularly our own galaxy.
On the theoretical side, where does polarization �t into the systematic investigation of microwave background

anisotropies? In cosmological scenarios which invoke adiabatic initial perturbations, as in Cold or Mixed Dark
Matter, the temperature correlation function, Eq. (7.7), contains features from which cosmological information may
be extracted, provided reionization did not occur too early. If the universe evolved according to this broad class
of models, measurement of the anisotropy spectrum will provide a detailed picture of the early linear growth of
perturbations. In this case, the expected polarization can be calculated and its detection at the predicted level will
provide important con�rming evidence for the theory. Conversely, the angular scale and amplitude for the peak of
the polarization correlation function, likely the easiest polarization quantity to measure, can serve as an additional
piece of information when constraining theories. Also, precision calculations of the temperature anisotropies in these
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models should incorporate the polarization contribution to the temperature source term in Eqs. (6.7) and (6.9); the
polarization may a�ect the power spectrum at the few percent level [42].
If the universe did not start out with adiabatic uctuations, as in topological defect models, or underwent early

reionization, polarization uctuations may take on added importance in understanding the nature of the linear pertur-
bations, because less information will be encoded in the temperature uctuation spectrum. Because of computational
di�culties in the cosmic string scenario, currently the most viable defect model, no detailed temperature uctuation
spectra including all relevant physical processes has yet been produced, and polarization has not been investigated.
Owing to the more complex nature of the underlying physics, it is reasonable to expect that cosmological information
will be more di�cult to recover from the cosmic string temperature uctuation spectrum than in the adiabatic case,
and then polarization may provide useful additional information. Likewise, if the universe underwent early reioniza-
tion prior to z = 20, much of the information in the adiabatic microwave background spectrum will be washed out.
In this case, the level of polarization will be signi�cantly larger [9], making it easier to detect, and may partially
compensate for the temperature spectrum's loss of information. Additionally, in a reionization scenario, substantial
secondary anisotropies in both temperature and polarization may be produced via the Ostriker-Vishniac e�ect [24].
Second-order e�ects on polarization have not yet been systematically investigated.
Polarization limits or detections may also give useful information about intergalactic magnetic �elds at early times.

Speci�cally, if a net circular polarization is ever detected and convincingly separated from foreground contamination,
this would be a strong suggestion for a magnetic �eld polarizing the free electrons. Even upper limits on polarization
provide one of the only methods of constraining the primordial magnetic �eld.
Finally, since temperature and polarization couple di�erently to tensor and scalar metric perturbations, it may be

possible to separate the two contributions with a combination of temperature and polarization measurements. Initial
steps in this direction have been taken in Ref. [43], which considers di�erences in hQT i between tensor and scalar
perturbations. The overall size of the correlations are of course small, but some di�erences do appear in the cross-
correlation function. A di�erent correlation function or some other type of statistic optimized to look for correlations
peculiar to tensor perturbations, may give more promising results.
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